
ESMF	Regridding	

Robert	Oehmke,	Peggy	Li,	Ryan	O’Kuingh7ons	
NOAA	Coopera=ve	Ins=tute	for	Research	in	Environmental	Sciences	

University	of	Colorado,	Boulder		
robert.oehmke@noaa.gov	

	
January	30,	2017	

	



Context	

•  NEMS uses the Earth System Modeling Framework 
(ESMF), which provides:  
–  Fundamental coupling operations such as fast parallel regridding of 

fields between models, parallel communication, and model time 
management 

–  Parallel data structures for representing fields, grids, and model 
components in a standard way 

•  This talk is about the regridding part of ESMF 

•  Except where noted, the work presented here is finished 
and we expect it to come out in ESMF 7.1.0 due late 
spring/early summer 2017 

•  Also available before that as a development snapshot 



Basic	Regridding	Flow	

•  Setup grids to represent geometry 
–  Cubed sphere for FV3 
–  Tripole for MOM, Hycom, CICE 
–  Gaussian for GSM 

•  Build Fields on grids to hold data 
 

 
•  Apply regridding matrix to move data from source to destination 

•  Setup regridding matrix 
between grids 
–  Chose regrid method 
–  Chose other regrid options 

•  Build Exchange grid 
between grids 

•  Setup regridding matrix 
using exchange grid 

OR 



ESMF	Cubed	Sphere	Support	

•  Two ways cubed spheres are 
supported in ESMF:  
1.  Unstructured Mesh 

•  Data fields are 1D 
•  Somewhat more efficient for calculating 

regridding weights 

2.  Multi-tile Grid: 
•  Data fields are 2D which more naturally 

matches shape of tiles 
 

 

	
	

	

	

 
•  Both representations can be regridded to other ESMF 

geometry types (i.e. Grids, Meshes, and Location 
Streams) 

 
•  We have recently added three new APIs to allow easier 

creation of cubed spheres in ESMF 
 

	
	

	

	



Cubed	Sphere	Mesh	Genera<on	API	

ESMF_MeshCreateCubedSphere(tileSize, nx, ny, rc) 
Create a ESMF_Mesh object for a cubed sphere grid using identical regular 
decomposition for every tile. The grid coordinates are generated based on the algorithm 
used by GEOS-5. The tile resolution is defined by tileSize. The total number of PETs has 
to be nx x ny x 6 (i.e. the smallest number of PETS it can run on is 6). We expect this 
restriction to be lifted by February 2017.  

tilesize - the number of elements on each side of the tile of the cubed sphere grid 
nx - the number of processors on the horizontal size of each tile 
ny - the number of processors on the vertical size of each tile 
[rc] - return code; equals ESMF_SUCCESS if there are no errors 

 

! Calculate decomposition  
nx = petCount/6 
ny = 1 
 
! Create Mesh 
mesh = ESMF_MeshCreateCubedSphere(tileSize=45, nx=nx,ny=ny, rc=localrc) 
 



Cubed	Sphere	Grid	Genera<on	API	

ESMF_GridCreateCubedSphere(tileSize,regDecompPTile, &             
decompflagPTile, deLabelList, delayout, name, rc) 

Create a six-tile ESMF_Grid for a Cubed Sphere grid using regular decomposition. Each tile can have 
different decomposition. The grid coordinates are generated based on the algorithm used by GEOS-5. 
The tile resolution is defined by tileSize. 

tilesize - the number of elements on each side of the tile of the cubed sphere grid 
[regDecompPTile] - list of DE counts for each dimension. The second index steps through the tiles.  
[decompflagPTile] - list of decomposition flags indicating how each dimension of each tile is to be divided between the 
DEs.  

[deLabelList] - list assigning DE labels to the default sequence of DEs.  
[delayout] - optional ESMF_DELayout object to be used. By default a new DELayout object will be created with as many 
DEs as there are PETs. 

[name] -ESMF_Grid name. 
[rc] - Return code; equals ESMF_SUCCESS if there are no errors. 
 
 ! Setup Decomposition 

decompTile(:,1)=(/2,2/)  ! Tile 1 
decompTile(:,2)=(/2,2/)  ! Tile 2 
decompTile(:,3)=(/2,2/)  ! Tile 3 
decompTile(:,4)=(/1,3/)  ! Tile 4 
decompTile(:,5)=(/1,3/)  ! Tile 5 
decompTile(:,6)=(/1,3/)  ! Tile 6 
 
! Create cubed sphere grid 
grid = ESMF_GridCreateCubedSphere(tileSize=20, regDecompPTile=decomptile, rc=rc) 
 



Cubed	Sphere	Read	From	GridSpec	File	API	

ESMF_GridCreateMosaic(filename,regDecompPTile, 
                                            decompflagPTile, &          
                                            deLabelList, delayout, & 
                                            name, tileFilePath, rc) 
Create a six-tile ESMF_Grid for a cubed sphere grid using regular decomposition. Each tile can have 
different decomposition. The tile connections are defined in a GRIDSPEC format mosaic file. 
    filename - The name of the GRIDSPEC Mosaic file 

    [regDecompPTile] - List of DE counts for each dimension 

    [decompflagPTile] - List of decomposition flags indicating how dimension of each tile is to be divided between DEs 

    [deLabelList] - List assigning DE labels to the default sequence of DEs 

    [delayout] - Optional ESMF_DELayout object to be used 

    [name] - ESMF_Grid name 

    [tileFilePath] - Optional argument to define the path where the tile files reside 

    [rc] - Return code; equals ESMF_SUCCESS if there are no errors. 

! Create cubed sphere grid from file using default decomposition 
 grid = ESMF_GridCreateMosaic(filename='data/C48_mosaic.nc’, rc=rc) 
 



Periodic	Grid	Create		
(Tripole	or	Gaussian)		

ESMF_GridCreate1PeriDim(regDecomp, decompflag, &          
                                                minIndex, maxIndex, & 
                                                polekindflag, …., rc) 
Create a grid with one periodic dimension using regular decomposition. The grid will consist of one tile. 
After creation the user needs to set the coordinates in the grid using ESMF_GridAddCoord() and then 
ESMF_GridGetCoord().  
    [regDecomp] –  DE counts for each dimension 

    [decompflag] – Decomposition flags indicating how each dimension is to be divided between the DEs 

    [minIndex] – The lowest index in the grid for each dimension. 

    maxIndex- The maximum index in the grid for each dimension. 

    [polekindflag] – flag specifying the type of connection that occurs at each pole. Defaults to monopole.  

    [rc] - Return code; equals ESMF_SUCCESS if there are no errors. 

! Use defaults to create 100x100 spherical grid with a monopole at each pole 
! (e.g. for Gaussian) 
grid = ESMF_GridCreate1PeriDim(maxIndex=(/100,100/),  rc=rc) 
 
! Create 100x100 spherical grid with bipole and monopole  
! (e.g. for Tripole) 
grid = ESMF_GridCreate1PeriDim(maxIndex=(/100,100/),  & 
             polekindflag=(/ESMF_ POLEKIND_MONOPOLE, ESMF_POLEKIND_BIPOLE/),  &   
             rc=rc) 
 



! create a grid 
grid = ESMF_GridCreate1PeriDim(minIndex=(/1,1/), & 
   maxIndex=(/10,20/), & 
   regDecomp=(/2,2/), name="atmgrid", rc=rc) 
  
 
 ! create a field from the grid and typekind 
! this allocates memory for you 
field1 = ESMF_FieldCreate(grid,   & 
      typekind=ESMF_TYPEKIND_R4, & 
      indexflag=ESMF_INDEX_DELOCAL, & 
      staggerloc=ESMF_STAGGERLOC_CENTER, & 
      name="pressure", rc=rc) 
 
 
! get local bounds, assuming one local DE 
call ESMF_FieldGet(field1, localDe=0, farrayPtr=farray2d, & 
   computationalLBound=clb, computationalUBound=cub, & 
   totalCount=ftc) 
 
do i = clb(1), cub(1) 
  do j = clb(2), cub(2) 

 farray2d(i,j) = …  ! computation over local DE 
  enddo 
enddo 
 

An ESMF_Field wraps model 
variables 
 

Additional metadata is stored along 
with the field data, such as the 
associated grid, stagger, etc. 
 
Field options 
 

-  data types: int*4, int*8, real*4, 
real*8 

-  memory allocated by user or 
ESMF 

-  stagger locations: center, corner, 
edges 

-  local or global indexing 
-  ungridded dimensions 
-  halo region (“ghost” cells) 

 

Code that creates an ESMF_Field on center stagger with 
local indexing.  Memory is allocated by ESMF.  The local 
bounds are retrieved. 9	

Crea<ng	a	Field	on	a	Grid	



! create source and destination grids  
srcGrid = ESMF_GridCreateCubedSphere(...) 
dstGrid = ESMF_GridCreate1PeriDim(...) 
 
! Create Fields to hold data 
srcField = ESMF_FieldCreate(srcGrid,...) 
dstField = ESMF_FieldCreate(dstGrid,...) 
 
! compute regrid weight matrix  
call ESMF_FieldRegridStore(srcField, dstField, routehandle, ...) 
 
! loop over time 
do t=1,... 
 

 ! compute new srcField 
 
          ! apply regrid weight matrix in parallel 

 call ESMF_FieldRegrid(srcField, dstField, routehandle,  ...) 
enddo 
 
! release resources 
call ESMF_FieldRegridRelease(routehandle, ...) 

Regrid operation 
computed in two phases 
 

The first phase computes an 
interpolation weight matrix 
which is efficiently stored in an 
ESMF_RouteHandle. 
 
The weights only need to be 
computed once. 
 
The second phase applies the 
weight matrix to a source 
field resulting in a destination 
field. 
 
This same pattern is used for 
other operations such as 
redistribution and halo. 
 
 

Typical code pattern for executing an ESMF communications 
operations. Once computed, a RouteHandle can be reused for 
multiple calls. 10	

Calculate	Regridding	Weights	and	Apply	Them	



Regrid	Methods	
•  Bilinear:	

–  Des=na=on	is	a	linear	combina=on	of	source	cell	corners	
–  Weights	based	distance	from	corners	
–  Typically	used	to	regrid	model	state	variables	(e.g.	temperature)	

	
	

•  Higher	order	patch	recovery:	
–  Mul=ple	polynomial	patches	represent	region	around	source	cell	
–  Des=na=on	is	linear	combina=on	of	patch	values	
–  Yields	be7er	deriva=ves/smoother	results	than	bilinear	
–  Based	on	“patch	recovery”	used	in	finite	element	modeling	[1][2]	
	
	

•  Nearest	neighbor:	
–  Des=na=on	is	equal	to	closest	source	point	(or	vise	versa)	
–  Useful	for	extrapola=ng	data	outside	of	source	grid,	or	categorical	data	

	
	

	



Conserva<ve	Regrid	Methods	
	

•  First-order	conserva=ve:	
–  Des=na=on	is	combina=on	of	intersec=ng	source	cells	
–  Preserves	integral	of	data	across	interpola=on	

•  Higher-order	conserva=ve	(in	progress):	
–  Des=na=on	is	combina=on	of	intersec=on	source	cells	modified	to	

take	into	account	source	cell	gradient	
–  Requires	a	wider	stencil	and	more	computa=on,	so	more	expensive	

in	terms	of	memory	and	=me	than	first-order	
–  Preserves	integral	of	field	across	interpola=on,	but	gives	smoother	

results	than	first-order	(especially	when	going	from	coarser	to	finer	
grids	

	
	



	

	

	
	

Conserva<ve	Methods	Example	

Source: 
•  10 degree uniform global 
•  F =  2+cos(lon)^2 * cos(2*lat) 

Destinations: 
•  2 degree uniform global 

First-Order Conservative 
 

Higher-Order Conservative 
(Preliminary) 

 

F =  2+cos(lon)^2 * cos(2*lat) 
 



Other	Regrid	Op<ons	
	

•  Path	between	points	in	bilinear	on	a	sphere:	
–  Straight	line	
–  Great	circle		

•  Op=ons	for	extrapola=ng	across	pole	region:	
–  Full	circle	average	
–  N-point	average	
–  Teeth	
–  No	pole		

•  Others:		
–  Source	and	Des=na=on	Masking	
–  Informa=on	about	what	happened	to	each	des=na=on	loca=on	

during	regridding	(e.g.	outside	source	grid,	masked,	etc.)		
–  User	area	
–  Ignore	unmapped,	Ignore	degenerate	
	

	

Full circle avg. 
N-point avg 

Teeth No Pole 



conservative 
regrid 

Side B 

Side A 

Modeled on GFDL Exchange Grid 
(V. Balaji et al. [3]) 
 
ESMF_XGrid generated from two 
sets of source grids/meshes 
 (sideA & sideB). 
-  merge process in which higher 

priority grids clip into lower priority 
grids 

-  masks are respected 
 
XGrid supports first-order 
conservative regridding - will 
support higher-order conservative 
method next release 
 
ESMF_Field is constructed on the 
XGrid mesh and used as source/
destination of regridding operations. 

ESMF_XGrid 

conservative 
regrid 

conservative 
regrid 

Exchange	Grid			



Exchange	Grid	Create	API	
ESMF_XGridCreate(sideAGrid, sideAMesh, sideBGrid, sideBMesh, & 
                               …, sideAMaskValues, sideBMaskValues, …, rc) 
 
Create an exchange grid between a set of Grids and Meshes on one side with a set of Grids and Meshes 
on another. Once the exchange grid has been created data can be interpolated between the two sides and 
the center using ESMF_FieldRegridStore().  
    [sideAGrid] - List of Grids on side A of the exchange grid. 

    [sideAMesh] – List of Meshes on side A of the exchange grid.  

    [sideBGrid] - List of Grids on side B of the exchange grid. 

    [sideBMesh] – List of Meshes on side B of the exchange grid.  

    [sideAMaskValues] – List of values which indicates a cell should be masked on side A. 

    [sideBMaskValues] – List of values which indicates a cell should be masked on side B. 

 ! Create a Mesh for side A 
atmMesh=ESMF_MeshCreateCubedSphere(…)  
 
! Create two Grids for side B 
landGrid=ESMF_GridCreate1PeriDim(…) 
oceanGrid=ESMF_GridCreate1PeriDim(…) 
 
! Create an exchange grid between the atmosphere Mesh and both land and ocean Grids.  
! Mask out any cells in the land and ocean grids with a mask value of 1.  
xgrid = ESMF_XGridCreate(sideAMesh=(/atmmesh), sideBGrid=(/landGrid, oceanGrid/),       
                                             sideBMaskValues=(/1/), rc=rc) 
 



! Start with atmMesh, landGrid, and oceanGrid 
 
! Create exchange grid  
xgrid = ESMF_XGridCreate(sideAMesh=(/atmmesh), sideBGrid=(/landGrid, oceanGrid/),  ….) 
 
! Create Fields to hold data 
atmField = ESMF_FieldCreate(atmMesh,...) 
landField = ESMF_FieldCreate(landGrid,...) 
oceanField = ESMF_FieldCreate(oceanGrid,...) 
xField = ESMF_FieldCreate(xgrid,...) 
 
! compute regrid weight matrix  from atm to xgrid 
call ESMF_FieldRegridStore(xgrid, atmField, xField, a2x_rhandle, ...) 
 
! compute regrid weight matrix  from  xgrid to ocean 
call ESMF_FieldRegridStore(xgrid, xField, oceanField,  x2o_rhandle, ...) 
 
! loop over time moving data from atm to ocean through xgrid 
do t=1,… 

 ! compute new atmField 
 
          ! apply regrid weight matrix moving data from atm to xgrid 

 call ESMF_FieldRegrid(atmField, xField, a2x_rhandle,  ...) 
 
          ! apply regrid weight matrix moving data from xgrid to ocean 
   call ESMF_FieldRegrid(xField, oceanField, x2o_rhandle,  ...) 
 
enddo 
 

Regridding	Using	an	Exchange	Grid	



Scheduled	for	Next	Release	

	

•  Cubed	sphere	crea=on	interfaces	(7.1.0)		ß	already	working	
	
•  Higher-order	conserva=ve	regridding	(7.1.0)	ß	in	progress	
	
•  Extrapola=on	of	points	that	lie	outside	the	source	grid	(7.1.0)	

•  Dynamic	masking	during	sparse	matrix	mul=ply	(7.1.0)	
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If	you	have	ques=ons	or	requests,	
	come	talk	to	me,	or	email:	

esmf_support@list.woc.noaa.gov	
			



End	of	Presenta=on	



F95	Regridding	Example	

! Create Geometry Classes 
srcGrid=  ESMF_GridCreateCubedSphere(…) 
dstMesh=ESMF_MeshCreate(…) 
  
! Create Fields 
srcField=ESMF_FieldCreate(srcGrid, …) 
dstField=ESMF_FieldCreate(dstMesh, …) 
 
! Calc regrid sparse matrix (routeHandle) 
ESMF_FieldRegridStore(srcField, dstField, …routeHandle, …) 
 
! Loop applying regrid sparse matrix (routeHandle) whenever source data changes 
do i=1,… 
         ! Compute new srcField  

 …. 
 
         ! Apply regrid sparse matrix (routeHandle) 

 ESMF_FieldRegrid(srcField, dstField, …routeHandle, …) 
 
        ! dstField contains regridded data here 
enddo 



Supported	Geometry	Types	
•  Grid:		

–  Structured	representa=on	of	a	region	
–  Consists	of	one	or	more	logically	

rectangular	=les	(e.g.	a	uniform	global	
grid	or	a	cubed	sphere	grid)	

	
•  Mesh:		

–  Unstructured	representa=on	of	a	region	
–  In	2D:	polygons	with	any	number	of	sides		

•  A	single	mesh	cell	can	consist	of	
mul=ple	pieces	(e.g.	Hawaii)	

–  In	3D:	tetrahedrons	&	hexahedrons	
	
•  LocStream	(Loca=on	Stream):	

–  Set	of	disconnected	points		
•  E.g.	loca=ons	of	observa=ons	

–  Very	flexible	and	efficient	
–  Can’t	be	used	with	every	regrid	method	

	

	



Spherical	Regrid	Support	
•  Regrid	works	with	spherical	(lon,	lat,	radius)	coordinates	
•  All	regrid	methods	supported	between	any	pair	of:	

–  2D	Global	or	2D	regional	logically	rectangular	Grids	
–  2D	Unstructured	Meshes	composed	of	polygons	with	any	number	of	sides	
–  2D	Mul=-=le	grids	(e.g.	cubed	spheres)	

•  Bilinear	supported	between	any	pair	of:	
–  3D	Meshes	composed	of	hexahedrons	
–  3D	Global	or	regional	logically	rectangular	Grids	

•  LocStreams	supported	for	above	depending	on	regrid	method	
	

	

	

Unstructured Grid Multi-tile Grid 3D Global Spherical Grid 



Cartesian	Regrid	Support	
•  Regrid	works	with	Cartesian	(x,y,z)	coordinates	
•  All	regrid	methods	between	any	pair	of:	

–  2D	Meshes	composed	of	polygons	with	any	number	of	sides	
–  2D	logically	rectangular	Grids	

•  Bilinear,	conserva=ve,	or	nearest	neighbor	between	any	pair	of:	
–  3D	Meshes	composed	of	hexahedrons	
–  3D	logically	rectangular	Grids	

•  LocStreams	supported	for	above	depending	on	regrid	method	

     2D Unstructured Mesh 
From www.ngdc.noaa.gov 

3D Grid 3D Unstructured Mesh 



Interfaces	

•  Complete	F95	API:	
–  use	ESMF	
–  Derived	types	and	methods	
–  Inves=ga=ng	moving	to	Fortran	2003	

•  C	API:	
–  #include	“ESMC.h”	
–  Structs	and	methods	

•  Python	API:	
–  Import	ESMPy	
–  Classes	with	methods	

•  Applica=ons:	
–  File-based	regrid	weight	genera=on:	

mpirun	–np	<N>	ESMF_RegridWeightGen	–s	….	
–  File-based	weight	genera=on	AND	applica=on	of	weights:	

mpirun	–np	<N>	ESMF_Regrid	–s…		



Regridding	Applica<on	Examples	

•  Regrid weight generation: 
 
      mpirun –np 16 ESMF_RegridWeightGen -s src_grid_file.nc –d dst_grid_file.nc 
                                                                   -m regrid method  … Other options …. 
                                                                   -w weight_file.nc 
 

•  src_grid_file.nc – file describing source grid 
•  dst_grid_file.nc – file describing destination grid 
•  regrid_method – the regrid method used to calculate the weights 
•  weight_file.nc – after running contains the regrid sparse matrix 

 
•  Regridding data between variables in two files: 
 
       mpirun –np 16 ESMF_Regrid –s src_file.nc –d dst_file.nc 
                                                        -m regrid method  … Other options ….  
 

•  src_file.nc – file containing source grid and data 
•  dst_file.nc -  file containing destination grid 
•  regrid_method – the regrid method to use 

 
 
 
 
 
 



Supported	Grid	File	Formats	
•  SCRIP:	

–  Format	used	by	SCRIP	regridding	tool	
–  2D	spherical	logically	rectangular	Grids	or	unstructured	Meshes	

•  ESMF	unstructured:	
–  Custom	ESMF	format	
–  2D	or	3D	/	spherical	or	Cartesian	unstructured	Meshes		
	

•  UGRID:	
–  Proposed	CF	conven=on	
–  2D	or	3D	/	spherical	or	Cartesian	unstructured	Meshes		

•  CF	Grid:	
–  CF	conven=on	
–  2D	spherical	logically	rectangular	Grid		

•  GRIDSPEC	mosaic:	
–  Format	from	GFDL	
–  2D	spherical	set	of	logically	rectangular	=les	with	connec=ons	between	them			



Regrid	Weight	Calcula<on	
Performance	
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Number	of	Processors	

First-Order	Conserva<ve	Interpola<on	Weight	Calcula<on	
(2km	unstructured	land	only	grid	to	1/8	degree	global	grid)		

Platform: IBM IDataPlex cluster (Yellowstone	at	NCAR)	
Grid size:  ~30 million cells and ~4 millions cells  



Other	Tools	Using	ESMF	Regrid	

•  Ultrascale	Visualiza=on	Climate	Data	Analysis	Tool	(UV-CDAT):	
–  Package	designed	for	analyzing	large	climate	data	sets	
–  Uses	ESMF	regridding	via	ESMPy	
–  Won	Federal	Laboratory	Consor=um	technology	transfer	award		

•  Cf-python:	
–  Python	package	for	manipula=ng	cf	data	and	files	
–  Uses	ESMF	regridding	via	ESMPy	
	
	

•  NCAR	Command	Language	(NCL):		
–  Language	for	scien=fic	data	analysis	and	visualiza=on	
–  Uses	ESMF	regridding	via	ESMF_RegridWeightGen	applica=on	
	

	


